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ABSTRACT
We describe a model of matchmaking suitable for the imple-
mentation of services, rather than their for their discovery
and composition. In the model, processing requirements are
modelled by client requests and computational resources are
software processors that compete for request processing as
the covariant implementations of an open service interface.
Matchmaking then relies on type analysis to rank proces-
sors against requests in support of a wide range of dispatch
strategies. We relate the model to the autonomicity of ser-
vice provision and briefly report on its deployment within a
production-level infrastructure for scientific computing.

Categories and Subject Descriptors
D.2.11 [SOFTWARE ENGINEERING]: Software Ar-
chitectures—Patterns; D.2.3 [SOFTWARE ENGINEER-
ING]: Coding Tools and Techniques—Object-oriented pro-
gramming

General Terms
Design, Algorithms

Keywords
Matchmaking, Covariance, Dynamic Deployment, Service
Extensibility and Autonomicity

1. MOTIVATION
The dynamic resolution of processing requirements against

pools of computational resources is a key requirement for
distributed computing infrastructures. Such matchmaking
supports the automatic composition of service resources that
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align with structural, semantic, and non-functional require-
ments [2]. Grid-based infrastructures use it to allocate clus-
ters of storage and processors for the execution of high-
performance and high-throughput applications [4]. In our
experience with the design and operation of gCube1, a pro-
duction-level European-funded infrastructure for scientific
research collaborations, matchmaking is routinely employed
against software and hardware resources alike.

It is in the context of this work that we have come to con-
sider a less conventional application of matchmaking within
the local boundaries of service implementations. Here, we
take processing requirements to be implicitly modelled by
service requests, and interpret computational resources as
software processors that implement the service interface and
compete for request processing. We assume that the inter-
face is open to covariant specialisation of input and output
domains, and that the processors mirror the specialisation
along one or more inheritance hierarchies. We then rely on a
matchmaker to analyse the runtime types that annotate the
graph structure of requests, and to infer from them a rank-
ing of processors based on how specifically they can process
the requests. Finally, we assume the application of service-
specific dispatch policies over the ranking, from those that
select the most specific processor to those that broadcast
requests to all processors (cf. Figure 1).

We believe that the approach has non-trivial implications
for the autonomicity of service provision. Firstly, a multi-
plicity of processors enables services to adapt responses to
requests, but also to the observation of failures of individ-
ual processors (i.e. by dispatching to the next processor in
the ranking). We thus associate local matchmaking with
increased resilience and adaptability of services. Secondly,
the assumption that processors may increase over time chal-
lenges the conventional expectation that service functional-
ity remains constant after their deployment. Accordingly,
we also view matchmaking as a core mechanism for the
dynamic extensibility of services. In our deployment sce-
nario, it allows us to frame third-party enhancement and
specialisation of infrastructural services within a model of
lightweight plugin development that promises lower costs
than full-blown service development.

The rest of the paper is organised as follows. In Section 2,
we illustrate the approach by example and discuss its design
in more detail. We present an idealised version of the current
algorithm in Section 3 and report on its deployment tests
within the gCube infrastructure in Section 4. Finally, we
draw conclusions and lines of further work in Section 5.

1
http://www.gcube-system.org
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Figure 1: A ‘gatekeeper’ dispatches a request to the
processor identified by a matchmaker as the inter-
face implementation that is most specific to the re-
quest’s input.

2. THE APPROACH
We illustrate the approach by example, choosing Java as

the implementation language and leaving the technological
complications of service-based implementations to Section 4.
We start with abstractions for fruit and fruit processors.
Fruit has a colour, processors squeeze fruit. Some proces-
sors may be specialised to squeeze only specific fruit of a
specific colour. We then rely on matchmaking to identify
those processors that may squeeze a given fruit.

2.1 Covariant Hierarchies
Our modelling requirements are deceptively simple. They

suggest a design based on parallel hierarchies of fruit and
processor classes to maximise the reuse of code that needs
no specialisation in subclasses. However, they also indicate
that wherever code does need to be specialised, the inter-
face may need specialisation too: all processors may expose
a squeeze method but some may refine its domain only to
red pears. Essentially, the base requirement is for imple-
mentation hierarchies with covariant specialisations of input
domains.

It is well known that covariant hierarchies are not eas-
ily reconciled with static typechecking [3]. Illustrating the
problem is outside the scope of the paper though we can
summarise it as follows. Covariant overriding of input do-
mains is unsound whenever inheritance implies subtyping: a
processor that overrides the squeeze method and specialises
its domain cannot be safely used as a generic fruit proces-
sor. Covariant overloading does not compromise safety but
the single-dispatch policy of mainstream languages makes it
irrelevant in a polymorphic context [1]. Cast-based emula-
tions of multiple-dispatch policies are possible, but would
prove clumsy even for our simple example [5]. We prefer to
de-couple inheritance and subtyping and use —what in Java
is called— generics to base hierarchies on parametric classes.
This inhibits unsound applications of subtyping, gives scope
for generic functions, and overall makes for clearer code.

With reference to the sketch in Figure 2, the hierarchy
rooted in Fruit is parametric in the colour type of its in-
stances. Subclasses may well reuse code but they do not
introduce new types. They introduce instead type operators
that yield more or less specific types for the same imple-

mentation at the point of class instantiation. Subtyping is
constrained to abstract over colours and is thus sound:

Fruit<? extends Colour> f = new William<Red>(new Red());
...f.getColour()... //sound & allowed
f.setColour(new Yellow()) //unsound & disallowed

The hierarchy of fruit processors reflects a similar deriva-
tion pattern, though subclasses specialise interface and im-
plementation explicitly, by restricting the bound over the
type of fruit they handle. The internal nodes of the hierar-
chy are abstract and thus serve solely for code reuse; how-
ever, they remain parametric to allow further specialisation.
Processors are instantiated at the leaves of the hierarchy,
where classes introduce new types by instantiating the pa-
rameterisation of their parents. Again, subtyping is sound
because constrained to abstract over instantiations of the
type parameter.

2.2 Matchmaking
For matchmaking purposes, the static qualifications of

processors must be backed up by runtime evidence. Our
approach requires processors to publish a prototypical ex-
ample of the fruit they can squeeze in order to provide a
dynamic trace of their covariant specialisations.To this end,
all the leaves of the processor hierarchy (see Figure 2) im-
plement the Prototyped interface. Constructing a prototype
is straightforward, though we note the conventional use of
null to convey generality of expectations against abstract
classes or interfaces (i.e. any concrete implementation will
do). Later, processors may be resolved against an actual
fruit and a dispatch interface, here the root of the hierar-
chy:

Fruit<?> rk = new Kaiser<Red>(new Red());
Map<FP,Float> processors = MatchMaker.match(FP.class,rk);

Informally, a processor matches the actual input if it im-
plements the dispatch interface and if the dynamic type of
its prototype is a structural supertype of the dynamic type
of the input, as described in Section 3. Assuming the proto-
type is reliable evidence, a successful match guarantees that
the actual input meets the expectations of the processor and
may thus be dispatched to it. However, prototypes do not
necessarily characterise processors and many may match the
same input; in particular, the transitivity of subtyping im-
plies that two processors may match the input more or less
specifically. Accordingly, the MatchMaker quantifies matches
with a specificity score and uses it to annotate and rank
matching processors. In our example:

RedKaiserProcessor: 1.00
KaiserProcessor: 0.50
RedPearProcessor: 0.50
PearProcessor:(): 0.16

RedKaiserProcessor and PearProcessor yield the strongest
and weakest match, respectively. AppleProcessor and
WilliamProcessor implement the dispatch interface but do
not yield a match and thus do not figure in the ranking.
Unsurprisingly, match correlation may remain ambiguous
against the subtype lattice: the score-based ranking may
hide a partial order in terms of specificity. The MatchMaker

has no further evidence to prioritise fruit colour over type,
and thus ranks equally RedPearProcessor and KaiserPro-

cessor as second best. As shown in Section 4, disambigua-
tion may come from the client, if and when necessary.
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abstract class Colour {...}
class Yellow extends Colour{...}
class Red extends Colour{...}

abstract class Fruit<C extends Colour>{C c; Fruit(C c){...} C getColour(){...} void setColour(C c){...}...};
class Pear<C extends Colour> extends Fruit<C>{...};
class Apple<C extends Colour> extends Fruit<C>{...}
class Kaiser<C extends Colour> extends Pear<C>{...};
class William<C extends Colour> extends Pear<C>{...};
abstract class FP<F extends Fruit<?>> {void squeeze(F f) {...}} //abstract processors for incremental code reuse
abstract class AP<A extends Apple<?>> extends FP<A> ...}
abstract class PP<P extends Pear<?>> extends FP<P> {...}
class FruitProcessor extends FP<Fruit<?>> implements Prototyped<Fruit<?>> { //concrete processors for matchmaking
...public Fruit<?> getPrototype() {return null;}...}
class AppleProcessor extends AP<Apple<?>> implements Prototyped<Apple<?>> {

....public Apple<?> getPrototype() {return new Apple(null);}...}
class PearProcessor extends PP<Pear<?>> implements Prototyped<Pear<?>> {

...public Pear<?> getPrototype() {return new Pear(null);}...}
class KaiserProcessor extends PP<KaiserPear<?>> implements Prototyped<KaiserPear<?>> {

...public KaiserPear<?> getPrototype() {return new KaiserPear(null);}...}
class WilliamProcessor extends PP<WilliamPear<?>> implements Prototyped<WilliamPear<?>> {

...public WilliamPear<?> getPrototype() {return new WilliamPear(null);}...}
class RedPearProcessor extends PP<Pear<Red>> implements Prototyped<Pear<Red>> {

...public Pear<Red> getPrototype() {return new Pear<Red>(new Red());}...}
class RedKaiserProcessor extends PP<KaiserPear<Red>> implements Prototyped<KaiserPear<Red>> {

...public KaiserPear<Red> getPrototype() {return new KaiserPear<Red>(new Red());}...}

interface Prototyped<T> {T getPrototype()}

Figure 2: Covariant hierarchies.

The input can then be dispatched to matching proces-
sors according to some policy at the client’s discretion. The
MatchMaker ignores how processors should be applied to
fruit: the existence of a squeeze method and the details
of its signature rest entirely with its clients. One possibil-
ity among many is to dispatch from the most to the least
specific processor until one completes successfully:

for (FP processor : processors.keySet()) {
try {processor.squeeze(rk);}
catch(Exception tolerated){}

}

The invocations of squeeze show clearly the interaction
between static and dynamic typechecking: their soundness
is an implication of matchmaking at runtime and could not
be guaranteed by the typechecker. In particular, we use raw
types to bypass the static typechecking regime under the
guard of the matchmaker.

3. THE ALGORITHM
At the heart of our matchmaker is the recursive algorithm

shown in Figure 3. The algorithm is repeatedly fed with the
actual input and the prototypes of processors that match the
dispatch interface, as shown in Section 2. For each proto-
type, its task is twofold: (a) to traverse the graph structures
of input and prototype and verify that the dynamic types of
corresponding nodes are in the subtyping relation; and (b) to
quantify with a global score in the range (0, 1] all the type
specialisations that may be observed at pairs of matching
nodes. Prototypes that pass the dynamic typecheck iden-
tify processors that can safely consume the input, in spite of
their deep covariant specialisations of the dispatch interface;

the scores allow to rank processors according to how specif-
ically they may consume the input. Prototypes that do not
pass the typecheck induce type errors and their processors
are excluded from the ranking returned to clients.

We capture the essence the algorithm in an ad-hoc no-
tation that minimises the verbosity of reflection algebras,
type systems, and control flow. At each call, a prelim-
inary check enforces subtyping of corresponding nodes in
the graph structures of input and prototype (CHK). Object
graphs may well be cyclic and the algorithm detects them
by keeping track of the node pairs it visits (HYP): optimistic
assumptions precede the comparison, propagate recursively
along with it, and prove right if the same node pairs are
re-visited without evidence of errors.

The analysis then distributes along the fields of the pro-
totype node with the goal to compute per-field scores and
recompose them later according to some scoring strategy.
There are cases to distinguish at each field, based on the
value or its dynamic type. The first cases cover the possi-
bility of null values in prototypes and inputs (NULL cases).
2 These carry no type information at runtime (dtypes) and
force the algorithm to resort to static knowledge (stypes). 3

In all cases, structural recursion is inhibited; the algorithm
then relies on the auxiliary function distance to measure
specificity in terms of the distance between types in the sub-
typing lattice. The remaining cases are type-based and mir-

2Remember from Section 2 that null is a convention on the con-
struction of prototypes that marks independence from concrete
implementation of an abstract type.
3Incidentally, this explains why case analysis is performed on the
fields of matching nodes rather than on the nodes themselves. The
matchmaker adds an artificial root to the prototype and object
graphs to ‘push’ all cases within fields.
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match(prototype AS p,input AS i,hypotheses AS hyp)

IF i HAS NOT p.dtype THEN ERROR /*CHK*/
IF hyp.contains(p,i) THEN RETURN 1 ELSE hyp.add(p,i) /*HYP*/

strategy is getScoringStrategy()

FOREACH field IN p
fieldScore IS

CASE i.field IS NULL AND p.field IS NULL => 1/distance(p.field.dtype,i.field.stype) /*NULL1*/
CASE i.field IS NULL AND p.field IS NOT NULL => 1/distance(p.field.dtype,i.field.stype) /*NULL2*/
CASE p.field IS NULL AND i.field IS NOT NULL => 1/distance(p.field.stype,i.field.dtype) /*NULL3*/
CASE (p.field.dtype IS ATOMIC) => 1 /*ATOM*/
CASE (p.field.dtype IS ARRAY) => /*ARRAY*/

IF p[0] IS null THEN 1 ELSE SUM_el(match(p[0],i[el],hyp)/i.length
DEFAULT CASE => match(p.field,i.field,hyp) /*BASE*/
scoringStrategy.addFieldScore(fieldScore);

depthScore is 1/distance(p.field.dtype,i.field.dtype) /*DEPTH*/
scoringStrategy.addDepthScore(depthScore)

RETURN scoringStrategy.computeScore

Figure 3: The Matchmaking Algorithm.

ror the modelling primitives of the language. Specificity is
measured recursively against object structures (BASE) while
it is not at stake against atomic types (ATOM). For arrays, the
algorithm exploits a second convention on the construction
of prototypes: one element suffices to convey type expecta-
tions. It then averages the scores obtained by comparing
such prototypical element with all the elements of the input
array. This is not possible if the prototypical element is null
as erasure leaves no type against which loss of specificity may
be measured.

Field scores measure specificity along the structure of the
prototype but do not reflect all the structure of the in-
put, which may spread across additional fields. Nor do
they cater for purely behavioural specialisations (additional
and overridden methods). For this, the algorithm accommo-
dates feeds a dedicated depth score into the scoring strategy.
Again, the depth score is based on the distance between the
dynamic types of the current node pair (DEPTH). Once all
the score contributions of subcomponents are available to
the strategy, the algorithm can finally compute the compos-
ite score and return it.

We factor the scoring strategy outside the algorithm to
acknowledge that there are different ways to assimilate mul-
tiple scores into a single one. Different strategies capture
different facets of the intuition and may be preferred in dif-
ferent contexts (cf. Figure 4).The AvgStrategy1 used in Sec-
tion 2 takes a full averaging approach to score composition,
essentially treating the depth score on par with field scores.
Averaging has two related effects: (a) scores that indicate
the specificity of the prototype boost the composed score in
a way that accumulates along the call chain; (b) scores that
indicate generality of the prototype can balance themselves
out in the composed score. Both effects may be deemed
undesirable: (a) introduces a strong bias to depth and can
reduce the intelligibility of the global score; similarly, (b)
may hide specialisations, particularly those associated with
behaviour alone. AvgStrategy2 compensates for (a) by ex-
cluding the exact matches (i.e. those with a score of 1) from

the composition. The MixedStrategy eliminates also some
of the negative implications of (b) by averaging only on field
scores and using the depth score as a penalisation factor
(cf. Section 2). Like AvgStrategy1, the GeometricStrategy

makes no distinction between field and depth scores. How-
ever, it also renounces averaging altogether. As all scores
are combined geometrically, the implications are in fact op-
posite: the focus is entirely on penalising the generality of
prototypes rather than rewarding their specificity. Accord-
ingly, scores drop very quickly.

4. A CASE STUDY
We have experimented with matchmaking in the imple-

mentation of one service of the gCube infrastructure. The
DIR Master is used to optimise the evaluation of content-
based queries across a number of distributed target collec-
tions, and is just one component of a broader framework for
service-based Distributed Information Retrieval (DIR) [6].
The service identifies the collections that appear to be the
most promising candidates for the evaluation of a given
query (collection selection). It also integrates the partial re-
sults obtained by evaluating the queries against individual
collections (result merging). Both functionalities admit a
range of implementations that diverge algorithmically, often
in reflection of different assumptions on the structure and
semantics of inputs and outputs (different queries, different
results, different selection and merging criteria). For an in-
frastructural service, it is undesirable to bind functionality
to a fixed set of implementations and to distribute it across
service interfaces that diverge in the shape of inputs and
outputs. It is equally unsustainable to base its adaptability
to community requirements on full-blown service develop-
ment. We have thus resorted to matchmaking to manage
multiple implementations under a single interface that is dy-
namically open to arbitrary specialisations. We have then
experimented with the dynamic deployment of additional
implementations as a cost-effective development model of
service extensibility.
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abstract class ScoringStrategy {
List<Float> scores = new ArrayList<Float>();
void addFieldScore(float score) {scores.add(score);}
void addDepthScore(float score) {addFieldScore(score);}
abstract float getScore();}

class AvgStrategy1 extends ScoringStrategy {
public float getScore() {
float score=0;for (Float f:scores) score=score+f;return (score==0)?1:score/scores.size();}}

class AvgStrategy2 extends AvgStrategy1 {
public void addFieldScore(float score) {if (score<1) super.addFieldScore(score);}}

class MixedStrategy extends AvgStrategy2 {
Float depthScore;
public void addFieldScore(float score) {if (score<1) super.addFieldScore(score);}
public void addDepthScore(float score) {this.depthScore=score;}
public float getScore() {return super.getScore()*depthScore;}}

class GeometricStrategy extends ScoringStrategy {
public float getScore() {float score = 1;for (Float f:scores) score=score*f;return score;}}

Figure 4: Scoring Strategies.

Specialisation of service interfaces is easily accommodated
with standard Web Service technologies. We have routed
client requests to a single gateway and used the matchmaker
to dispatch them from the gateway to suitable implemen-
tations of Ranker or Merger interfaces. The dispatch pol-
icy and the hierarchical arrangement of ranking processors,
merging processors, their inputs and their outputs follow the
patterns shown Section 2. As also suggested in Section 2, we
have extended the Prototyped interface to name processors,
and added functionality for name-based lookup. Processor
names are published as part of the service description and
clients may include them in requests for a tighter functional
coupling with the service. Pre-defined processors register
with the matchmaker at service startup. Additional pro-
cessors may become available at runtime as the payload of
service plugins, i.e. lightweight extensions of back-end ser-
vice functionality.

Plugins are distributed in standard JARs and may be de-
ployed within the Master ’s implementation through dedi-
cated operations of the interfaceBy a convention on the JAR
manifests, distributions name the implementation of a Plu-

gin interface which exports the functional extensions con-
tained therein. These include the additional processors and
the implementations of inputs and outputs that may be as-
sociated with their specialisations of the service interface.
In particular, processors are published as new capabilities of
the service and registered with the matchmaker to process
future requests that carry compatible inputs. Finally, the
plugin distribution is persisted and its functional extensions
locally redeployed at subsequent service startups.

5. CONCLUSIONS AND FURTHER WORK
Our deployment tests indicate that type-based matchmak-

ing may be conveniently embedded in a number of gCube
services. At the time of writing, the shift from a proof of
concept to a systematic adoption within the infrastructure
is officially under planning. Partly, this requires augment-
ing development tools with abstractions that simplify and
standardise the adoption of matchmaking within service im-
plementations.Most importantly, it calls for a refinement of
infrastructural mechanisms for service publication, discov-
ery, notification, persistence, and deployment to the case

of service plugins. Dependency management is particularly
challenging in this scenario and may require integration with
dynamic module systems such as OSGi4. The overall vision
is of an infrastructure that can autonomically extend its ca-
pabilities by monitoring the publication of plugins and by
overseeing their deployment within running services. We
conclude with a speculation on the broader role of a local
matchmaker within software design, particularly its poten-
tial as a general-purpose design patternThe observation here
is that matchmaking combines under a dynamic framework
the multiplicity of implementations associated with the fac-
tory pattern with the management of implementation de-
pendencies associated with factory, locator, and dependency
injection patterns. Even though such combination seems
generally desirable, further investigation is required to assess
its potential in application domains other than autonomic
service development.
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